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Introduction

e Vascular pathogens of plants and animals move long
distances through host veins, leading to systemic infection

e Non-vascular pathogens remain restricted to the site of
infection, triggering localized symptom development

e Differences between these modes of infection have
important ecological and economic consequences,
yet their genetic and biological bases are unclear.

e We aimed to determine the origins of vascular
pathogenesis In Xanthomonas, a diverse genus of
Gram-negative bacteria that cause vascular and non-vascular
diseases in over 200 monocot and dicot plants.

Methods

We downloaded 86 complete genomes of beta- and
gamma- proteobacteria, focusing on the Xanthamonadaceae

2. We tested for associations between vascular lifestyle and
gene family (i.e., orthogroup) presence using BayesTraits

3. We determined the genomic contexts of genes in the most
significant orthogroup using bespoke bioinformatic scripts

4. We identified duplications, losses, and horizontal gene
transfers (HGTs) affecting the most significant orthogroup
using phylogenetic tree reconciliation and hypothesis testing

5. We evaluated pathogenicity of two non-vascular pathogens
transformed with genes from the top orthogroup that
originated from vascular pathogens

Results

e celA is a cellobiohydrolase that is significantly associated
with transitions to vascular lifestyles

e celA is conserved in vascular pathogens from three distinct
genera: Xanthomonas, Xylella and Ralstonia.

e celA is found in 4 distinct genomic contexts

e celA has been transferred at least 4 times to what are now
vascular pathogens through recombination-mediated HGT

e celA has been lost at least 10 times in non-vascular
pathogens through TE insertions and sequence deletions

e Heterologous expression of CelA changed tissue-
specificity, converting two non-vascular Xanthomonas strains
to xylem-colonizing vascular pathogens

X. translucens pv. X. translucens pv. X. translucens pv.
translucens undulosa undulosa + celA
(vascular) (non-vascular) (vascular)

to non-vascular X. translucens pv. undulosa permits
tissue-specific vascular pathogenesis. 14 day-old barley (cv.
Morex) leaves were clipped with water (control) or water-based
inoculum (OD_, 0.5) of GFP-expressing vascular X. translucens pv.
translucens UPB 886 (left), non-vascular X. translucens pv. undulosa
UPB 513 (middle) and UPB 513 Tn7::celA, _ (right). Leaf images focus
on a vascular bundle downstream of the leaf lesion 12 days
post-inoculation. Green: bacterial cells expressing GFP. Magenta:

Discussion

Rather than representing evolutionary endpoints, our results suggest
that Xanthomonadaceae rapidly modulate between vascular and
non-vascular lifestyles through gene gain and loss

/Figure 1: Addition of xylem pathogen-conserved celA homologs\

\Chlorophyll autofluorescence to outline non-vascular mesophyll cells. )
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mgure 2. Horizontal gene transfer and loss drive the distribution h
celA in vascular and non-vascular bacterial pathogens. Shown to
the left is a majority rule consensus tree based on 81 maximum
likelihood trees of single copy orthologs that summarizes species
relationships among bacteria included in this study. To the right of the
tree is a graphic summarizing the presence/absence of the four
distinct neighborhoods in which celA is found across each genome, in
all cases whether celA is present or not. Transpositions, gains, and
wsses are numbered and summarized below. /

Niche adaptation

Vascular
Non-vascular

Gene loss/inactivation

X translucens

Horizontal

transfer m

Je|nosen

Je|nosen
-uou

GAGGGTCAGGGCTAATCAGGAGACCTTATGTGCG

~

Figure 3: Convergent inactivation of celA in non-vascular pathogens
through sequence deletions and transposable element (TE) insertions.
Multiple sequence alignment of celA CDS from vascular and non-vascular X.
oryzae strains (left) and X. translucens strains (right). SNPs shown in red. Y
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/Figure 4: Homologous recombination mediates the insertion of\
horizontally-acquired celA sequences in vascular pathogen genomes.
Shown above are two maximum likelihood trees with bootstrap support
depicting the phylogenetic relationships of sequence flanking an intragenic
\recombination breakpoint in X. campestris p.v. campestris (vascular) )
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