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Introduction
● Vascular pathogens of plants and animals move long 

distances through host veins, leading to systemic infection
● Non-vascular pathogens remain restricted to the site of 

infection, triggering localized symptom development
● Differences between these modes of infection have 

important ecological and economic consequences,          
yet their genetic and biological bases are unclear. 

● We aimed to determine the origins of vascular 
pathogenesis in Xanthomonas, a diverse genus of 
Gram-negative bacteria that cause vascular and non-vascular 
diseases in over 200 monocot and dicot plants. 

Methods
1. We downloaded 86 complete genomes of beta- and 

gamma- proteobacteria, focusing on the Xanthamonadaceae
2. We tested for associations between vascular lifestyle and 

gene family (i.e., orthogroup) presence using BayesTraits
3. We determined the genomic contexts of genes in the most 

significant orthogroup using bespoke bioinformatic scripts
4. We identified duplications, losses, and horizontal gene 

transfers (HGTs) affecting the most significant orthogroup 
using phylogenetic tree reconciliation and hypothesis testing 

5. We evaluated pathogenicity of two non-vascular pathogens 
transformed with genes from the top orthogroup that 
originated from vascular pathogens

Results
● celA is a cellobiohydrolase that is significantly associated 

with transitions to vascular lifestyles
● celA is conserved in vascular pathogens from three distinct 

genera: Xanthomonas, Xylella and Ralstonia.
● celA is found in 4 distinct genomic contexts
● celA has been transferred at least 4 times to what are now 

vascular pathogens through recombination-mediated HGT
● celA has been lost at least 10 times in non-vascular 

pathogens through TE insertions and sequence deletions
● Heterologous expression of CelA changed tissue- 

specificity, converting two non-vascular Xanthomonas strains 
to xylem-colonizing vascular pathogens

Discussion
Rather than representing evolutionary endpoints, our results suggest 
that Xanthomonadaceae rapidly modulate between vascular and 
non-vascular lifestyles through gene gain and loss
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A single,
horizontally 
transferred gene
enables bacterial 
infections of plant 
vascular systems

Figure 2. Horizontal gene transfer and loss drive the distribution of 
celA in vascular and non-vascular bacterial pathogens. Shown to 
the left is a majority rule consensus tree based on 81 maximum 
likelihood trees of single copy orthologs that summarizes species 
relationships among bacteria included in this study. To the right of the 
tree is a graphic summarizing the presence/absence of the four 
distinct neighborhoods in which celA is found across each genome, in 
all cases whether celA is present or not. Transpositions, gains, and 
losses are numbered and summarized below.

Figure 1: Addition of xylem pathogen-conserved celA homologs 
to non-vascular X. translucens pv. undulosa permits 
tissue-specific vascular pathogenesis. 14 day-old barley (cv. 
Morex) leaves were clipped with water (control) or water-based 
inoculum (OD600 0.5) of GFP-expressing vascular X. translucens pv. 
translucens UPB 886 (left), non-vascular X. translucens pv. undulosa 
UPB 513 (middle) and UPB 513 Tn7::celAXoo (right). Leaf images focus 
on a vascular bundle downstream of the leaf lesion 12 days 
post-inoculation. Green: bacterial cells expressing GFP. Magenta: 
chlorophyll autofluorescence to outline non-vascular mesophyll cells. 
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Figure 3: Convergent inactivation of celA in non-vascular pathogens 
through sequence deletions and transposable element (TE) insertions. 
Multiple sequence alignment of celA CDS from vascular and non-vascular X. 
oryzae strains (left) and X. translucens strains (right). SNPs shown in red.
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Figure 4: Homologous recombination mediates the insertion of 
horizontally-acquired celA sequences in vascular pathogen genomes. 
Shown above are two maximum likelihood trees with bootstrap support 
depicting the phylogenetic relationships of sequence flanking an intragenic 
recombination breakpoint in X. campestris p.v. campestris (vascular)
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Check out Poster 192 “A single cellobiosidase is required for 
barley hydathode and xylem colonization by Xanthomonas 
translucens” presented by Jonathan M. Jacobs for more on celA


