Archives

Interactions

IS-MPMI > COMMUNITY > Interactions > Posts > InterView with Dr. Wenbo Ma
Jun 28
InterView with Dr. Wenbo Ma

Tianrun "Jerry" Li​

Tianrun Li

Tianrun Li is a fourth-year Ph.D. candidate in the Plant Pathology program at the University of California, Davis, working under the guidance of Dr. Gitta Coaker. He completed his bachelor's degree from Northwest A&F University, China, in 2019. His current research focuses on exploring the utility of pattern recognition receptor (PRR) triggered immunity to control vector-borne disease. He is also investigating novel plant flagellin receptors with expanded ligand recognition specificity and their potential for receptor engineering.

Dr. Wenbo Ma

Dr. Wenbo Ma is a senior group leader at The Sainsbury Laboratory (TSL) and an honorary professor at the University of East Anglia, UK. Her group's long-term research interest has been to understand the plant–pathogen coevolutionary arms race, with a focus on microbial pathogenesis and effector biology. She is also one of the pioneers in determining the role of small RNAs in plant immunity against nonviral pathogens.

Conversation with Dr. Ma

Not only is Wenbo a recipient of the 2021 Ruth Allen Award from The American Phytopathological Society (APS), she was recently elected as a 2022 Fellow of the American Association for the Advancement of Science (AAAS). To mark the occasion, I had the privilege of speaking with Wenbo about her scientific journey, accomplishments, and forward-thinking perspectives.

Wenbo initiated her research journey in China, where she obtained her M.S. degree at the Chinese Academy of Sciences. Subsequently, in 2003, she attained her Ph.D. degree from the University of Waterloo in Canada, after which she pursued a postdoctoral position at the University of Toronto.

In 2006, Wenbo started as an assistant professor at the University of California, Riverside (UCR) and was later promoted to associate professor with tenure, eventually attaining the rank of full professor. Several years ago, she joined TSL, where she established new research programs centered around major host–pathogen systems.

When asked how she feels about being honored as an AAAS Fellow, Wenbo states that she's extremely fortunate and grateful for the recognition she has received as a reflection of her scientific journey. She adds that the honor is shared with her team.

I had the privilege of working with many amazing students and postdocs. Without their support and effort, my research would not be possible.

Throughout her career, Wenbo has devoted substantial time to conducting research on diverse continents, including Asia, America, and Europe. These experiences have provided her a comprehensive understanding of the unique challenges, cultural dynamics, and opportunities that each research environment offers. This journey has helped her cultivate a deep appreciation for the value of collaboration and diversity in her scientific pursuits.

She highlights two key elements of interdisciplinary collaborations: concepts and methodologies. Because scientists can sometimes become deeply immersed in their own field, limiting their perspectives, Wenbo encourages them to deliberately venture outside their comfort zone and broaden their scope by learning from other fields. This approach, she believes, helps researchers enhance their understanding of diverse concepts.

Simultaneously, Wenbo points out the role of technological advancements in fostering scientific breakthroughs. Invaluable knowledge can be obtained from structural biologists, and their insights have now become an indispensable part of her research program. As the popularity of AI-based analysis tools grows, there is great potential for them to become an integral part of the toolkit of every early-career researcher in biology-related fields.

This spirit of cooperation is crucial, especially in a field as intricate as MPMI, where bringing ideas from different perspectives and utilizing interdisciplinary methodologies often pave the way to the most exciting and fundamental discoveries in plant immunity and pathogen effector biology.​

The potential for translating discoveries from our basic biological research into practical applications, particularly in the area of disease resistance in crops, is what drives our work…. For me, effectors are one of the most intriguing components of these systems, providing critical insights into plant pathogenesis.

By understanding plant immunity, scientists learn how plants become resistant. However, without an understanding of pathogens we wouldn't know how plants become susceptible. Wenbo envisions a future where the knowledge gathered from studying virulence mechanisms utilized by pathogens will pave a new passage to generate resistant crops.

However, challenge is everywhere. A key hurdle in crop improvement is the perpetual coevolutionary battle between pathogens and plants.​

Pathogens are always evolving, which is why our goal is to enhance the durability of resistance in plants.

She adds that "there is no silver bullet solution" and underlines the importance of a comprehensive understanding of plant–pathogen coevolution to develop integrated resistance strategies.

The effects of climate change add layers of complexity to plant pathology research. Recent studies have found plant stress and immune signaling are dampened in a warming climate. Global warming and ecological shift are altering the delicate balance between plants and their microbial "partners."

"Environmental factors are integral to plant–pathogen interactions. With climate change, both the plant's immune system and pathogen's virulence mechanisms can be affected, altering disease patterns. Our research needs to incorporate more of these environmental aspects," explains Wenbo, emphasizing the importance of actively integrating environmental factors into MPMI research programs.

Looking toward the future, Wenbo is excited about the role of small molecules in immune signaling as a promising research frontier. She shares that her research group's goal is to use effector proteins as molecular probes to dissect the complex immune signaling process and adds that "It also provides an opportunity to incorporate metabolome analysis and structural biology, which is truly exciting for us."

"This field is witnessing a wave of really cool technologies," says Wenbo, specifically calling out the impact of structure prediction. "Now with structural models, we can gather a wealth of information that can help us generate testable hypotheses." It's a game-changer that has opened up previously unexplored avenues to investigate protein functions.

Wenbo's contributions to the scientific community extend far beyond her exceptional research. Over the span of 17 years as a professor and mentor, her laboratory has nurtured numerous postdoctoral fellows, graduate students, and undergraduate students. Many of them have gone on to flourish in their scientific pursuits.

Wenbo feels strongly about mentoring early-career professionals and wants to help them make their mark in the field of MPMI. She emphasizes the importance of motivation, open-mindedness, and persistence.

She believes that we are at a fascinating juncture where we have already accumulated a lot of important knowledge and are poised to make the next jump. "Seeing the opportunities of making potential breakthroughs should fuel your motivation," she urges early-career researchers. "We are in an exciting time for MPMI research. There are many exciting projects aiming to answer some of the most pressing questions."

Being open-minded is key to advancing in this field, and researchers should embrace new technologies and explore novel approaches.

You need to be very adaptable to new technologies, willing to try new things. Try it, try different things.

When AlphaFold was first announced, Wenbo was enthused by how many in the scientific community "immediately tried to model their favorite proteins." This eagerness to embrace and experiment with new technologies is something she views as vital.

With all these exciting prospects in mind, Wenbo is also fully aware that any scientific pursuit can be riddled with challenges and potential frustrations. Experiments may not always align with initial hypotheses and require series of adjustments and readjustments. This is where the importance of resilience and persistence comes into play—maintaining a positive attitude, viewing these roadblocks not as failures but as opportunities to refine hypotheses and seek alternative methods, is crucial.

Wenbo concluded our enlightening conversation with a final piece of wisdom, encouraging early-career researchers to "keep a positive energy and challenge yourself by stepping out of your comfort zone; be persistent but flexible; the sky is unlimited."​

​Must be ​logged in to post comments.

Comments

There are no comments for this post.

 ‭(Hidden)‬ Blog Tools