| Ani Chouldjian
|
 Front row (left to
right): Ilea Chau, Jamie Calma, Yuritzy Rodriguez, Yuan Chen, Karl Schreiber.
Back row (left to right): Jana Hassan, Hunter Thornton, Jennifer Lewis, Maël
Baudin, Jacob Carroll-Johnson, Jack Kim.
|
 Dr. Kimberly Webb
|
Ani Chouldjian and Jennifer D. Lewis
Ani Chouldjian is currently a senior at the University of
California, Berkeley, majoring in microbial biology. She is interested in
plant-microbe interactions, infectious diseases, and genetics. After graduation,
she wishes to take a year or two off from school to pursue research
opportunities and later enter a microbiology and immunology Ph.D. program.
Jennifer Lewis is a principal investigator at the U.S. Department of
Agriculture and an adjunct associate professor at UC Berkeley. Her lab studies
the plant immune system and its response to the bacterial pathogen Pseudomonas syringae.
The Lewis lab is committed to diversifying plant sciences. To encourage this,
we are carrying out interviews with prominent scientists in the field to
discuss their research and their perspectives on diversifying science.
Dr. Kimberly Webb
Dr. Kimberly
Webb is a plant pathologist with the U.S. Department of Agriculture
Agricultural Research Service (USDA ARS) in Fort Collins, CO. Her research
primarily focuses on diseases in Beta vulgaris (sugar beets) caused by Fusarium species, Beet necrotic
yellow vein virus (BNYVV), and Rhizoctonia species. It is
important to study these diseases because sugar beet is an important commercial
crop that accounts for 50–60% of
sucrose production within the United States. Fusarium species, BNYVV, and Rhizoctonia species cause foliar symptoms in B. vulgaris. Fusarium invades the
vascular system of the plant and produces toxins, causing yellowing of the
leaves and necrosis. BNYVV causes rhizomania, whose symptoms include taproot
constriction and proliferation of small feeder roots with reduced sugar content.
BNYVV also causes wilting and yellowing of leaves. Rhizoctonia causes stunted leaf growth
and wilting of foliage. By preventing these plant diseases, growers can
decrease crop losses and increase sugar beet yields.
Dr. Webb studies many isolates within many species of Fusarium and tries to
identify isolates that cause disease in the field. A major tool she uses to do
this is phylogenetics. In one of her studies, Dr. Webb and her team identified
multiple species of Fusarium
that are able to cause disease in sugar beets; they found a greater number
of virulent strains than people previously thought existed. Dr. Webb says, "Phylogenetics
is a really good tool to see if there are genetic mechanisms that are
associated with these pathogen phenotypes." She also studies the effects
of temperature and soil moisture on Fusarium virulence. She has found that
temperatures of 24°C
or higher lead to more Fusarium yellows; however, symptoms do not worsen as
temperatures increase past 24°C.
Higher soil moisture also correlates with an increase in Fusarium yellows.
However when looking at the effect of temperature and soil moisture on Fusarium virulence,
the results ultimately depend on the Fusarium strain under study.
Dr. Webb also studies sugar beet resistance and
susceptibility to BNYVV and Rhizoctonia species. In both cases, she uses proteomics and metabolomics
to look at the proteins and metabolites present in healthy and infected B. vulgaris. She also
looks at the difference in protein and metabolite content in infected
susceptible or resistant strains of sugar beets. Looking at these differences
allows her to identify certain pathways that are related to BNYVV and Rhizoctonia infection
and resistance within sugar beets. These studies help identify specific genes
in B. vulgaris that
confer resistance to these pathogens.
Dr. Webb is proud of the fact that through her
research she is able to help farmers solve problems they are experiencing in the
field. She says, "Within my research, being able to help people solve
problems has been the most exciting part of it, even in my private industry
days I really enjoyed being able to solve a problem for my customers and
farmers at the time." Dr. Webb believes that her research is important for
the future because she is "building little pieces of knowledge that other
researchers can use to not only help sugar beet growers but also agricultural
producers everywhere."
Although she really enjoys solving problems in her
field of research, Dr. Webb never planned on becoming a plant pathologist. When
she first started her undergraduate degree at Colorado State University, her
intended major was business. However, during her senior year she decided to
change her major to agronomy after taking a plant biology course in which her
professor really challenged her. She said,
When I was an undergraduate I actually started as a business major, science was not even in my mindset. I was in business courses, and I needed to have three more credits to fill out my year. The only class I could get into was a plant biology class, so I ended up taking it. I think that just having really good professors really got me interested in plant biology, and so I switched my undergraduate major when I was a senior and ended up completing a whole agronomy degree within a year and a half in addition to an agricultural business minor.
After finishing her undergraduate degree, Dr. Webb
took a job as a crop consultant in western Kansas, where she was responsible
for advising dry bean growers on general agronomic practices. She was
responsible for looking at pinto bean fields and helping farmers decide how to
better manage their irrigation, soils, and plant diseases. It was this job that
led her to the decision to attend graduate school and learn more about plant
pathogens. She said,
My farmers'
plants had a ton of diseases. Every week I seemed to tell them to spray more
chemicals, and it didn't seem to do any good. They asked me why I was telling
them to spray chemicals when it wasn't doing anything, and I said 'I don't
really know.' That made me decide that I wanted to go to graduate school to
learn more about plant pathology, and I'm glad I did.
Dr. Webb believes that her greatest accomplishment so
far is the fact that she is the first person in her family to go to college and
be able to work her way through college on her own. She says, "I was the
first person in my family to go to college and to go all the way and get a Ph.D.,
when we really had no knowledge of what a college education was; this is the
thing I am most proud of in my career." She participated in a Ph.D.
program at Kansas State University and conducted her studies under the
supervision of Dr. Jan
Leach. Dr. Webb studied Xanthomonas oryzae pv. oryzae, which is a bacterium that causes rice blight.
Because rice is not grown in Kansas, Dr. Webb spent most of her time in the
Philippines at her rice plots and "looked at different combinations of how
to use rice resistance genes and collect bacteria that was in the field."
She would then bring the bacteria she collected back to the United States and
study them. She said, "[We would] characterize the bacterial population using
phylogenetics to see if we were maintaining resistance or if we were
encouraging the bacterial population to mutate to be more virulent."
On
the very day she received her Ph.D. degree in plant pathology in 2005, Dr. Webb
had her son. She then decided to work in industry. She said, "It's been a
unique path for me; most people take a traditional postdoc path after a Ph.D.
[program] and then move into research or academia. I actually went into
industry instead of a traditional postdoc." While working in industry, Dr.
Webb had the title of seed health manager at STA Laboratories and managed seed
health testing at two facilities—one in Colorado and one in California. She
made sure that testing followed industry standards for quality. She said, "What
our company did was, test all commercial agricultural seed for the presence of
seedborne pathogens. It was basically a diagnostic laboratory. I worked with
over 40 different crops and disease interactions to identify and determine if
they were actually colonizing the seed prior to being sold to the market."
After three years of working in industry, Dr. Webb joined the USDA ARS and
continues to conduct research there today.
When asked if anyone ever discouraged her from
pursuing a career in science because she is a woman, Dr. Webb said, "I
wouldn't necessarily say because I'm a woman"; however, she believes that
biases toward women definitely exist within academia and the workplace. Dr.
Webb was strongly discouraged from having kids, and she believes that women
having to choose between having a career or a family is a big issue in today's
society. She said,
I had an
amazing female mentor; however, she was probably the biggest one who
discouraged me from having kids. I was actually discouraged against either
starting a family or staying in science. There is still this perception that
the most successful female scientists tend to not have kids. I think that is
one of the hardest things for women in science to deal with, because women also
tend to be the primary child carer and to take care of the home. I don't need
to be the most prestigious scientist. I want to do my job to the best of my
abilities, but I may not ever win a Nobel Prize. I really wanted to put my
family as a priority. I think that there is still this stigma that if you don't
want to be the best, then you're somehow not successful, and I think it's a
particular issue in academia. Or, you have to delay everything until after you
get tenure; you have to do "x," "y," and "z"
first, then you can have kids. It's almost a competition type mentality.
Dr. Webb also believes that biases against women exist
within the workplace. She said, "There's this stereotype that women tend
to be more empathetic, gentle, or more understanding, and if you're not falling
into that group then you're being judged on how you communicate with your
coworkers. I have been criticized for not being emotional enough; I don't think
that would ever be told to a man." She believes that a solution to this
problem can be to incorporate training or classes on leadership into graduate programs,
where students learn how to deal with certain communication problems or
personality differences. She said, "I think this is where business does a
much better job than science, because they teach students how to interact with
different people and different personalities. When I was in private industry, I
had to take a couple supervisor and manager training courses. They were week
long sessions, and they were great. I think we should provide more
opportunities like that to our undergraduate and graduate students in science
and plant pathology." Dr. Webb also said that in her 16 years of working
in plant pathology she hasn't seen a decrease in these biases toward women,
which is why these training courses and classes would be important to not only
decrease biases toward women but also toward minorities.
When asked if she thinks the inclusion of women in
plant pathology will increase in the future, Dr. Webb stated that she believes
it will; however, women should also be educated so that they know that careers
in plant pathology exist. She stated that, "It's still a primarily male-dominated
field. Within the USDA, at my location up until two years ago we only had two
female scientists. I think we are doing a better job at the high school and
undergraduate levels of bringing females into the sciences. It would be nice,
especially in rural and agricultural communities, to let women know that there
is more to agricultural careers than just traditional farming. Most women go
into the family farm and business but don't know that there is more technical
science and research that they could do in agriculture outside of just farming."
Aside from educating students on how to deal with
certain biases and women about their career options, Dr. Webb also believes
that the public should be educated on how food is grown. She says, "I wish
that we would teach people more about agriculture than just trying to pick
sides over which agricultural system is better than the other." Dr. Webb
believes that many people fear new scientific technologies, like those used in
agriculture, and, therefore, believes that the public should be educated about
topics like genetically modified crops.
In her free time, Dr. Webb loves to spend time with
her son, who sometimes accompanies her to the lab. She also loves being
outdoors and hiking. One piece of advice that Dr. Webb has for the younger
generation is to "make sure you have a life outside of work. For your
mental health, you have to have activities and other things that you like to
do." |