A functional bacterium-to-plant DNA transfer machinery of Rhizobium etli
V. CITOVSKY (1) (1) State University of New York at Stony Brook, U.S.A.

Since the discovery of gene transfer from Agrobacterium to host plants in the late 1970s, this bacterial pathogen has been widely used in research and biotechnology to generate transgenic plants. Agrobacterium’s infection process relies on a set of virulence proteins that mediate the transfer of a segment of its own DNA (T-DNA) into the host cell genome. To date, Agrobacterium is believed to be the prokaryote with the capability of cross-kingdoms gene transfer. However, homologs of the Agrobacterium’s virulence proteins are found in some symbiotic plant-associated bacterial species, belonging to the Rhizobium genus. We show that one of these species, Rhizobium etli, encodes a complete set of virulence proteins and is able to mediate transfer and integration of DNA into host-plant cell genome, when provided with a T-DNA. This is the first time that a bacterium-to-plant DNA transfer machinery encoded by a non-Agrobacterium species is shown to be functional.

Abstract Number: S5-6
Session Type: Special Session